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Abstract

The present work deals with the proposition and evaluation of easy to implement control structures for a hydrogenation industrial size reactor.
The used mathematical model formulation is a detailed deterministic and previously validated one, which was made focusing on the hydrogenation
reaction of o-cresol to obtain the 2-methyl-cyclohexanol, in the presence of a Ni/SiO, catalyst. A simplified model, generated through factorial
design statistical tool, is also used for stationary states predictions, providing very quick solution, suitable for on-line applications. Five different
control structures, based on the feedback and feedforward classic structures and on combinations of them, are evaluated both concerning to the
ability of the controller to maintain (regulatory control) or to change the controlled variable to the new set-point (servo control) in a reasonable
action time. The study shows that, in the analyzed operation range, the combined structure is the best one to be used for this reactor, both for the
servo and regulatory control problems. The calculation of control actions is significantly reduced by the use of simplified models. However, since
an offset is present in the regulatory problem when the simplified model is used, this model is not suggested to be used in the regulatory problem.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Three-phase reactors can be found in several important
applications, including hydrogenation and oxidation processes.
Hydrogenation reactions are industrially widely applied, usu-
ally for commodities production, with large production scale.
It consists of a highly non-linear process, multivariable, with
exothermic reactions taking place. The high performance oper-
ation of large-scale industrial units is one of the most difficult
and dangerous in chemical industries, especially when reactors
are considered. A competitive advantage in such kind of systems
is the operation at an optimal level of performance, even at very
high throughputs. In the last decade, model predictive control
(MPC) algorithms have been widely studied and applied in many
chemical processes. Unfortunately, reports on control of three-
phase catalytic reactors are relatively scarce when compared to
other types of catalytic reactors [1]. High conversion and selec-
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tivity are usually required and more recently, after the 1990s,
a full conversion of the limiting reactant (for instance, higher
alcohols) are demanded for environmental sake. At this point it
is interesting to draw attention to some typical aspects of such
reactors. They are usually very large units (above 100 tonnes/h
with length in the range of several dozen of meters) with a quite
complex behavior due to phase change and strong interactions
among heat and mass transfer, involving the gas, liquid and solid
phases.

An overview of commercially available MPC technologies
(LQG, linear quadratic Gaussian; IDCOM, model predictive
heuristic; DMC, dynamic matrix control; QDMC controllers,
constrained dynamic matrix control) is given by Qin and Badg-
well [2]. This did not change in the last one to two years, if
an overview of the industrial implementation is made [3]. The
history of evolution of unconstrained to constrained algorithms
and some applications of such algorithms are reported by Qin
and Badgwell. A lot of work in literature that applies MPC in a
variety of chemical processes can be found. The state-of-art of
controller performance monitoring, including both feedforward
and feedback control, has been reviewed by Hoo et al. [4]. These
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Nomenclature

ag and ajs gas-liquid and liquid—solid interfacial areas,

A*
Ao
Aj
Aj
Ag

A

A gfo

respectively (m™!)

solubility of the component A (kmol/m?)
pre-exponential factor (kmol/(kg catalysts))
pre-exponential factor (m3/mol)

pre-exponential factor (m3/mol)

A component concentration in the gas phase
(kmol/m?)

A component concentration in the liquid phase
(kmol/m?)

A component concentration in the gas phase in the
reactor feed (kmol/m?)

A component concentration in the liquid phase in
the reactor feed (kmol/m?)

B component concentration in the liquid phase
(kmol/m?)

B component concentration in the liquid phase in
the reactor feed (kmol/m?)

concentration of the component A (kmol/m3)
concentration of the component B (kmol/m?)
heat capacity (kJ/(kg K))

effective diffusivity (m?/s)

reactor diameter (m)

Ey, E1 and E, activation energies (J/mol)

F;
h

AH,

k

molar flow of ith component (kmol/s)
convective heat transfer coefficient (kJ/(m2 s K))
heat of reaction (kJ/(k mol))

kinetic constant (kmol/(kg catalysts))

Ky and Kjs mass-transfer coefficients between the

gas-liquid and liquid—solid phases, respectively
(cm/s)

K4 and Kp constants of adsorption to components A and

B, respectively (m3/kmol)

reactor length (m)

dimensionless particle radial position
universal gas constant (J/(mol K))
particle radius (m)

rate of  hydrogenation of
(kmol/(kg catalysts))

temperature (K)

temperature in the feeding (K)
temperature of the coolant fluid (K)
time (s)

linear velocity (m/s)

global heat-transfer coefficient (kJ/(m? s K))
catalyst concentration ((kg catalyst)/mS)
dimensionless reactor axial position

o-cresol

Greek letters

gas phase hold-up

liquid phase hold-up

solid porosity

thermal conductivity (kJ/(m s K))
stoichiometric coefficient

0 density (kg/m?)
T tortuosity
Subscripts

A component A

B component B

g gas phase

fo feeding

1 liquid phase

i initial value (reactor inlet)
p particle

S solid

r coolant fluid
Superscript

s catalyst surface

two control strategies were demonstrated both in a case study of
an ideal continuous-stirred tank reactor (CSTR) and in an indus-
trial polymer reactor. Additionally, it was shown that minimum
variance control is usually undesirable because of issues such
as model/plant mismatch. Thornhill et al. [5] also worked with
a CSTR, but with a pilot scale one. They examined factors that
influence the minimum variance performance measure of a SISO
control loop and discussed the reasons why performance during
set-point changes differs from the regulatory performance dur-
ing operation at a constant set-point. The results demonstrated
how regulatory performance is influenced by the nature of the
disturbances, and that correlations of signals within a control
loop can indicate whether the disturbances are random or deter-
ministic. For controller performance purposes, the correlation
coefficients between the manipulated variable (MV) and move-
ments of MV (i.e. the increments in the manipulated variable)
should be below 0.41 to ensure that MV movements are not too
aggressive. Pannocchia [6] developed a novel robust model pre-
dictive control (RMPC) algorithm for the feedback temperature
control of a CSTR. Offset removal in the controlled variables
for set-points changes was achieved.

Although the possible advantages of advanced nonlinear
model-based control methods over classical methods, Utz et
al. [7] accredit the relatively low number of real industrial
applications of such advanced control to the time-consuming
optimization as well as the difficulty to model suitably nonlin-
ear processes. In order to contribute with industrial applications,
the authors presented a comparative evaluation of nonlinear
model predictive control (NMPC) and a two-degree-of-freedom
control-scheme with flatness-based feedforward control design
and decentralized PI-controllers (FB-2DOF). The studies are
carried with a set-point transition using a class of chemical
CSTR that functions as a benchmark process for nonlinear con-
trol, to know, the Klatt—Engell reactor. Based on an analysis of
simulation scenarios, the controllers are compared with respect
to controller performance, robustness criteria, and implemen-
tation issues. NMPC exhibits performance advantages when
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it comes to time-efficient set-point transitions when there is
no plant-model mismatch, which is mostly due to the higher
number of design parameters of this controller. In FB-2DOF
control, the relatively few design parameters are a limiting
factor, especially when it comes to tight performance require-
ments or when constraints have to be considered. NMPC
allows direct incorporation of process models and constraints,
but, it employs computationally expensive online optimization.
Robustness properties of the two controllers are found to be
quite comparable for the chosen and investigated transition time.
NMPC is relatively simple to be implemented. For FB-2DOF,
the software implementation itself is very simple. However,
the control design can require high engineering efforts when
parametrising the system by the flat output or guaranteeing
adherence of the trajectories to constraints. Wang el al. [8] pro-
posed the original open loop unstable plants to be first stabilized
using a state feedback strategy followed by the local lineariza-
tion within a regime classified by a gap metric measure. In order
to make a smooth transition between regimes and to make the
control free of offset, a Kalman filter is implemented. The advan-
tages of the NMPC proposed approach were demonstrated in
two case studies: robust control of a CSTR and of a Zymomonas
mobilis fermentor.

Thornhill et al. [9] applied the principles of the minimum
variance controller (MVC) for the controller performance eval-
uation, as introduced by Bezergianni and Georgakis [10] and
extended by the same authors in 2003 [11], when the calcu-
lation of the relative variance index was suggested. Thornhill
et al. [9] reported 12 single-input-single-output (SISO) MVC
controllers in refinery plant with positive results. The calcula-
tion of the MVC assumes that the process can be represented
adequately by a linear time-invariant (LTI) transfer function
model with additive disturbances. The control loop performance
assessment (CLPA) algorithm has several parameters (number
of terms in the model, sampling interval, data ensemble length
and the prediction horizon) that have to be adjusted correctly to
give the best results. The aim of the paper was to recommend
default numerical settings for these parameters that are suitable
for most refinery control loops. Procedures were described for
selecting these parameters which made it feasible to implement
the algorithm on a refinery-wide scale.

A lot of work is also found in control applications in fluid
catalytic cracking units. A methodology for the evaluation of
strategies control and for the preliminary assessment of con-
trollability of nonlinear systems was proposed by Maya-Yescas
and Aguilar [12] for chemical reactors (FCC regenerators).
The results obtained when evaluating the control strategies pro-
posed in four different situations were coherent with industrial
practice and operating experience. Alvarez-Ramirez et al. [13]
presented the design of multivariable feedback control configu-
rations for control of the riser output for FCC units. Numerical
simulations were performed to show the effectiveness of sev-
eral multivariable control configurations under disturbances and
uncertainty parameters. Vieiraetal. [14] implemented and evalu-
ated the performance of a neural network-based model predictive
control (MPC) applied to a FCC converter. The studies were
carried out by dynamic simulation, where the simulator out-

put signals were disturbed by random noise. To simulate usual
procedures in the FCC industrial plant, a servo-regulatory con-
trol problem was implemented, as well as a regulatory one.
According to the authors, the neural model predictive control
is a powerful alternative tool to bring the process under con-
trol for both servo and regulatory problems. The neural network
MPC response showed to be even smoother than that obtained
from DMC algorithm. The predictions from the neural model
and from the optimal control calculations could be obtained
in a few seconds when the control horizon was equal to 1 or
2.

Alpbaz et al. [15] provide the comparison of DMC and PID
controllers applied to a packed distillation column. The reflux
ratio was chosen as the manipulated variable to control the over-
head product temperature. The dynamic behavior of the column
was observed at various step changes in the feed composition.
Numerical results obtained from theoretical model are compared
with experimental data. The performance of these control sys-
tems was tested using the integral square error (ISE) index. The
simulations results showed that the performance of DMC con-
troller for tracking a temperature set-point is better than that of
conventional PID controller.

The control of many chemical processes like tubular reac-
tors, with or without catalytic bed, is complicated by problems
associated with the on-line measurements of desired control
objectives, especially those concerned with concentrations. For
the tubular reactors, the primary control objective is usually the
regulation of the outlet concentration at optimum levels. The
outlet concentration is not easily measured on-line, so it can
be inferred (estimated) from the available temperature measure-
ments.

In the area of tubular reactors, Wu and Chen [16] imple-
mented an analytic optimization algorithm connected to the
measurement-based predictive control framework on an exother-
mic tubular reactor system (PFR). The exit reactor temperature
is used as the controlled variable and the coolant flow rate
and coolant temperature in the feed are treated as manipu-
lated variables. They proposed two predictive control strategies
denominated nondistributed model predictive control without
sensing state information and with sensing state information
at the prescribed location. The first scheme is a nondistributed
output feedback controller. It manipulates a distributed reac-
tor system using the steady-state optimization approach and an
open-loop observer while state/input constraints and unknown
inlet disturbances are being considered simultaneously. In this
scheme structure, treated as a feedback-based implementation
one, there are two models: one steady-state model, used in
optimization calculations, and a so-called lumped difference
model, which predicts the output with respect to the input
constraints. The second scheme, a measurement-based predic-
tive control algorithm controller design, can induce the stable
and no-offset output regulation at the outlet of the reactor.
Results show that the second scheme presented better track-
ing than the first one, but more-oscillating responses were
detected.

Dechechi et al. [17] developed a novel adaptive control algo-
rithm based on dynamic matrix control (DMC) philosophy with
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adaptive features for application in an industrial hydrogena-
tion catalytic multiphase reactor. This process has complex heat
transfer mechanisms and fast dynamic behavior. The on-line
internal model adaptation was carried out successfully using
recursive least square method with an ARMA (autoregressive
moving average)-based model. This algorithm showed a very
good performance leading the reactor to be operated safely in
large range of operation conditions. The results also showed
the high efficiency of the developed multivariable controller
when applied to this industrial process under normal operation.
There were five controlled variables (the most important one
was the temperature along the reactor length) and six manipu-
lated variables (cooling flow rate of each jacketed tubes of the
reactor).

Costa and Maciel Filho [18] evaluated the performance of a
non-linear predictive controller applied to a three-phase catalytic
reactor using a functional link network as internal model. The
exit reactor temperature is controlled and the feed temperature
is the manipulated variable. It was shown that the functional link
structure represented accurately the dynamic and static behavior
of the process, having, therefore, good performance as internal
model of the control algorithm. The performance of the non-
linear controller was tested for load disturbances and set-point
changes with good results.

Rezende et al. [19] investigated the DMC performance on the
feedback control of a multi-phase reactor, evaluating the impact
of controller parameters. These authors proposed and analyzed
a simple to use and easy to implement control structure (DMC),
using SISO control approach in two separate studies, one for the
control of the desired product concentration and the other for
the control of temperature at the reactor exit.

In the present work, the control problem is formulated as
the thermal control of the reactor, controlling concentration in
an indirect way. The emphasis here is given to relative easy
to implement control structures. For the establishment of the
control strategy of the considered hydrogenation reactor, it is
necessary, besides to define its operational objective and the
manipulated(s) variable(s), to develop a model that predicts the
main characteristics of the reactor dynamic behavior. Once these
items are defined, suitable control structures may be proposed.
In the implementation of the control loop, it is necessary to
know the physical and operational limitations of the reactor
manipulated and controlled variables. This appears to be obvi-
ous but it rarely is explicitly taken into account in control studies
evaluation. Here the difficulties to implement, for instance, a
control scheme which requires a temperature profile establish-
ment along the reactor length, are considered in the control
strategy propositions, because clearly there are physical limi-
tations to be successfully implemented in industrial plants. The
control strategies evaluated in this work are possible and rela-
tively easy to implement with the existing resources in many
typical industrial plants, especially those in where a regulatory
control layer based on PID controller is available. Most of hydro-
genation plants have this already on due to safety reasons. This
information is essential to define a suitable and feasible con-
trol strategy, especially when on-line optimization is required.
In such situations, the optimizer finds out the best operational

values for the process variables and these values are used as
controller(s) set-point(s).

2. Hydrogenation reactor: modeling and characteristics

The system used as study case is a multiphase reactor with
industrial size, where the hydrogenation reaction of o-cresol
takes place. This is representative of many industrially important
processes, as phenol and vegetable oils hydrogenation reactors,
where very exothermic reactions occur. The deterministic model
here used takes into account the heterogeneous dynamic behav-
ior of the system, and consists of mass and energy balance
equations for the reactants in gas, liquid and at solid phase [20].
The kinetic law considers the hydrogenation reaction of o-cresol
to obtain 2-methyl-cyclo-hexanol, in the presence of the cata-
lyst Ni/SiO, [20]. The utilized scheme to represent the reactor
is shown in Fig. 1.

The hydrogenation of o-cresol to 2-methyl-cyclohexanol on
Ni/SiO; can be represented by Eq. (1):

3H,(g) + CeH4OHCH;3(1) — CeH;oOHCH;3(1) (1
A(g) + vB(1) — vC(l) 2)

Eq. (2) is a generic representation of three-phase hydrogenation
reactions. In this study case, A stands for hydrogen, B for o-
cresol, C for 2-methyl-cyclohexanol and v is the stoichiometric
coefficient (equal to 1/3).

Eq. (3) has been obtained for the reaction rate of o-cresol
hydrogenation reaction [21], where C; is the concentration of
the component i (kmol/m3):

KAKpCuCp

Rw =
W k(l + KACA)(1 + K5Cp) )

The kinetic constants are functions of temperature, based on the
Arrehnius’ law:

k = Agexp (—E0> 4)
RT
E
Ka = Arexp (—R;> (5)
Catalyst Coolant fluid
Liquid
| / |
Reactants %b bngb / N % o oroducts
G « \\Q\ o b‘b
Li i?d WA ** et ——
‘ SIS > < b‘bb S & Reactants
SPHOL VIO D
| |
Gas l[ Coolant fluid

Fig. 1. Three-phase reactor.
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Kp=A £ 6
B = Azexp < RT) (6)
The kinetic parameters for Egs. (4)—(6) are: Ap=5.4x
105 kmol/(kg catalysts), Ay =10.55m/mol, A;=7.54 x
1073 m3/mol,  Ep=82220J/mol,  E;=5003J/mol  and
E>=16325J/mol.

The following hypothesis were adopted for the model devel-
opment [20,22]: (a) negligible pressure variations; (b) reaction
of the type: A(g) + vB(1) - vC(l), occurring at the catalyst and
with a kinetic that is dependent on the concentrations of A
and B; (c) no phase change in the system. The operational
parameters of the reactor, mass and energy balance coefficients,
and physical properties have been considered constant. Some
of these parameters were generated by empirical correlations
[22].

The model equations, Eqs. (7)—(27), are differential ones
and are built-up through the mass and energy balance for
all substances in all system phases, i.e. in gas, liquid and
adsorbed at the catalyst particles. The model equations are as
follow:

1. Fluid phase:
e Mass balance of reactant A in the gas phase:

dAy  Deg Ay ug dA, .
— = —"——-—=—=—(K A*—A
&g ot 12 872 L o ( gl)Aagl( )]
(N
Deg 0Ag
I TZ o = ug(Ag - Agfo) ()
0A
8 =0 9)
8Z =1
e Mass balance of reactant A in the liquid phase:
dA1 Do PA w04
— = — - ——+ KK A" — A
— (Kis)gais(A1 — AY) (10)
D¢ 0A;
— | =~ Ax) (1n
L o0z 7=0
0A
Nk} -0 (12)
8Z 7=1

e Mass balance of reactant B in the liquid phase:

3B D 3B u 3B (Ki)pan(Bi— B (13)

8 _—mn Y — — — Q a S -

D¢ 0By

—=—| =wu(Bi— Bip) (14)
L 8Z 7=0

9B

951 -0 (15)
aZ =1

e Energy balance in the fluid phase:

oT
(egpgCpg + Slplcpl)g

_ eghg + E1AI 827T &Py Cpgity + &1 Cpruy 3T
L2 9z2 L 0z

, 4U
+hsas(Tg — T) — F(T -1 (16)
t

Eghg + E1A| 3l

I 32 :(Egpgcpgug+glplcplul)(T — Tto)

z=0
17

T
Tl ) (18)
BZ =1

2. Solid Phase:
e Mass balance of reactant A at the solid phase:

0A; Deal 9 (23As

) _ psRw(As, Bs, T,) (19)

T TR Zor, P,
De, 0A
= . > = (Kis)a(A1 = AY) (20)
Rp orp |,
0A¢
=0 21
Ip =0

e Mass balance of reactant B at the solid phase:

BBS Deb 1 8 (zaBs

) — vpsu1 Rw(As, Bs, Ts)

o TR i \ Py
(22)
De¢p, 0B, i
= 3| = KsB— B (23)
p 9 lp=1
0Bs
— =0 (24)
orp ry=0
e Energy balance for the solid phase:
T, A 1 0 [ 50T
Cops—=—>55— —
P T R 2o, (rp or,
+ps(—AHR)Rw(As, Bs, Ty) (25)
Ag 0T
S = h(T-TY) (26)
Ry orp ro=1
aT;
. =0 27
8rP rp=1

The numeric solution of this model was obtained by using the
method of lines in conjunction with orthogonal collocation,
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which showed to be an effective procedure for the space dis-
cretization in conjunction with the DASSL algorithm for the
integration over time [20].

The open-loop dynamic behavior of multiphase reactors was
observed by Vasco de Toledo et al. [20]. The reactor is a typical
non-linear distributed parameter system and has its behavior
even more complex due to mass transfer resistance among
phases. The dynamic behavior of the reactor was observed for
disturbances in the reactant fluid feed temperature, Tt,, and in the
feed temperature of the coolant fluid, 7; .It is observed that the
reactor is very sensitive to changes in T¢, and in 7;. An asymp-
totic dynamic behavior is exhibited by the temperature of the
reactor and an oscillatory behavior by the coolant fluid temper-
ature, which is a typical characteristic of distributed parameter
systems. The system is very sensitive to changes in 7} due to the
fact that this model has a large complexity in the catalyst particle
model, which generates great sensibility in relation to changes
in the operational parameters. This sensibility of the dynamic
behavior of the reactor in relation to changes in the coolant fluid
is observed mainly in industrial situations.

In the present work, for the reactor control, the tested manip-
ulated variables were the temperature of the coolant fluid, 77,
and the reactants feed temperature, Tf,. This is coherent with
the operating strategies of many existing hydrogenation plants
[3]. As already mentioned, the controlled variable is the reactor
exit temperature.

3. Proposition of control structures

In this work, the performance analysis of different control
strategies (feedback, feedforward and a combination of both
strategies) is made. As mentioned, emphasis is given to relative
easy to implement control structures.

In theory, feedback strategy is a more guaranteed one because
the controller will always take an action if the controlled vari-
able changes from the set-point value. However, due to process
dynamics, this action can last longer until the process returns to
the set-point.

The feedforward strategy, on the other hand, is able to take
an action earlier in the process, since it measures the perturba-
tion and not the controlled variable. The feedforward strategy,
however, frequently suffers from several inherent difficulties: it
requires the identification of the disturbance, and a very good
model of the process. If a non-measured perturbation takes place,
the feedforward controller is unable to take an action. These
requirements lead to difficulties for many systems in the chemi-
cal industry, mainly due to the fact that the changes in the process

1
J = ming = EAuTHAu +cTAu, where H=ATWTWA, T =—-E"wTwa
u

subjected to the following operational constraints :

parameters cannot be compensated, unless a reliable estimation
procedure is incorporated into the model.

In this way, this work proposes to evaluate both isolated struc-
tures and a composition of them for the o-cresol hydrogenation

reactor. The feedback structure makes use of the dynamic matrix
control (DMC). The way the composed weighted action (feed-
back and feedforward) can be formulated is also analyzed, i.e.,
the best weight for both actions is studied.

In this work, possible model mismatch is not considered in
the evaluation, but this is not a limitation, since a comparison
among control structures is made with the same model prediction
quality.

3.1. Quadratic dynamic matrix control (QDMC)

The feedback strategy is here implemented by the predictive
QDMC (quadratic dynamic matrix control), a model predictive
control (MPC) with constraints. The QDMC is based on the
solution of an optimization problem, here based on the method
of successive quadratic programming (SQP) [22-24].

Among the digital controllers, the QDMC was chosen based
on its robustness and flexibility. Some tests with PID have shown
that a considerable effort need to be done to tune the parame-
ters and this is a drawback for its implementation. Melo et al. [1]
compared the performance of two advanced controllers (QDMC
and STQDMC: self tuning quadratic dynamic matrix control) for
the two-layers optimization and feedback control of the o-cresol
hydrogenation reactor and concluded that both controllers pre-
sented good performance. However, STQDMC requires longer
computational calculation times because of its adaptive mech-
anism. In this way, the QDMC algorithm was preferable in the
studied case and it was selected for the present study.

The QDMC algorithm predicts the performance of the con-
trolled variables over a prediction horizon, by solving an
optimization problem using a quadratic programming (QP)
approach to find out the controller actions in a control horizon
(smaller or equal to the prediction horizon)[25]. The predicted
behavior is calculated using a process model, convolution one,
obtained by the standard procedure for dynamic matrix-based
controllers. The projected errors, between the desired trajectory
and the predicted response, are used to determine future control
actions. Only the first control action is implemented. At the next
sampling instance, the real plant measurement is used to correct
any plant/model mismatch and the optimization is repeated to
find out the next optimal control solution.

When criteria of high level complexity are proposed to obtain
the control action, and when constraints are considered in the
controlled and manipulated variables, it is necessary to use opti-
mization algorithms, because, in this case, there is no analytical
solution for the control problem. In this work, the controller
performance criterion is expressed as

(28)

Ymin < Y < Ymax Umin < U < Umax, Almin < A < Almax

In these equations, W is the weighting factor matrix (com-
posed of adjustable parameters that allow to penalize the control
actions); A is the dynamic matrix of the system; E is the array
that stores the differences between past predictions and reference
values; Au is the array with the incremental of the manipulated
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variables, y is the controlled variable (with ymax and ymin as min-
imal and maximal values respectively) and u is the manipulated
variable (With umax and uyi, as maximum and minimum values,
respectively).

A matrix is the dynamic matrix, generated by the classic
method, with the system response to a step, using the convolution
(or parametric) model, which linearly relates manipulated and
controlled variables. W is the diagonal matrix with the suppres-
sion factors, which are control tuning parameters. Both matrices
were generated by open-loop simulations [26].

It is important to emphasize that in order to generate the W
and A matrixes, a dynamic model of the process is required.
This model for the o-cresol hydrogenation reactor is composed
by Egs. (3)—(27).

It is worthwhile mentioning that this controller, associated
with optimization algorithm, is able to consider more sophis-
ticated control problems. Usually the benefits obtained in this
approach justify the inherent increase of complexity (compu-
tational efforts for instance) when it is compared to analytical
methods of solution, since a better performance may be obtained.
DMC controllers are relatively easy to be developed and imple-
mented and usually present good results for specific range of
operation.

The use of DMC-based algorithms is also justified since
many companies usually have the controller license available,
although sometimes not in use due to the lack of deeper studies
on the controller performance of large-scale systems, including
monitoring difficulties and reliable control strategies evaluation.

3.2. Feedforward strategy

The objective of a feedforward controller is basically to gen-
erate anticipated corrective actions to compensate measured
input disturbances. The idea here is to adopt a different approach
for the control strategy regarding the action of manipulated vari-
able and the dynamic response. The general concept of classic
feedforward is used to formulate the control strategy. The feed-
forward action is therefore calculated aiming to minimize the
quadratic error, which is a measure of the difference between the
calculated exit reactor temperature and set-point for this process
variable. This objective function for the feedforward controller
may be written as in Eq. (29), in which either T§, or 7; is selected
as manipulated variable:

n%fion((T - Tsetpoint)z)

st Tromin < Tro = Ttomax

or 29)
n}irn(T — Tset point)2

S.t.: Timin < Ty < T max

Both Ty, and T; are analyzed as manipulated variable, which
means that, when T¥, is used as manipulated variable, the first
optimization problem of Eq. (29) is solved and when T; is
selected as manipulated variable, the second optimization prob-
lem is considered. At Section 5, the use of these two variables
as practically feasible manipulated variables is discussed. It

is worthwhile mentioning that, for practical implementation,
changes in the coolant temperature are difficult to be used, since
usually thermal fluids have as characteristic high heat capac-
ity. This means that a large effort, in terms of heat exchanger
designs and operation, has to be made to change the tempera-
ture of large amount of fluid in a reasonable time interval. This
feature is taken into account in the analysis of results.

The Levenberg—Marquardt algorithm was used to implement
this methodology: it finds out the manipulated variable value,
knowing the desired set-point and the process disturbances.

Since this feedforward strategy does not require a dynamic
model (no prediction horizon is part of the model), a simplified
model, calculated for stationary states, can be used. Itis expected
that a simplified model is easier to be implemented and of fast
computation calculation. In this way, two alternatives were used
in this work for the reactor exit temperature (7) calculation to be
used in Eq. (29): the detailed deterministic model (Egs. (3)—(27))
and a simplified one, generated with use of a statistical tool (fac-
torial design). The application of the factorial design to generate
a simplified stationary working model for control purposes is a
new procedure introduced in this work and that seems to be a
powerful procedure, due to its simplicity and good predictions
capabilities, as illustrated in Section 4.

3.3. Evaluated control strategies

This work evaluated five control strategies, to know:

(a) Single feedback (FB) — in fact, a DMC controller, as
described in Section 3.1.

(b) Single feedforward, coupled with deterministic model
(FF_deterministic).

(c) Single feedforward, coupled with simplified statistical
model (FF_statistical).

(d) Combination of feedback and feedforward, with determin-
istic model for both ones (FF_deterministic + FB).

(e) Combination of feedback and feedforward, with simpli-
fied statistical model for feedforward action calculation
(FF _statistical + FB).

The coupling of feedback and feedforward control (strategies
d and e above) is made by a weighted action, as depicted in Eq.
(30):

u_(feedback + feedforward)
= B x u_feedforward + (1 — B8) x u_feedback, 0 <pg <1
(30)

It is expected that the combined action (feedback combined
with feedforward, Eq. (30)), presents part of the advantages of
both isolated strategies, and decreases the drawbacks of iso-
lated strategies. Section 5 demonstrates the advantages of such
combined action.

Two situations exist in which a control system can be
required. In the first one, called regulatory control problem, the
disturbance, also called load, change in an unexpected way and
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Fig. 2. Schematic diagram of the control strategies.

the control objective is to keep the exit at a desired value (set-
point). This is a typical problem in many hydrogenation plants
due to changes in the hydrogen supply with impact in the reactor
pressure and behavior. In the second situation, a change in the
value of the desired stationary state (set-point) is made and the
objective of the control is to bring the controlled variable to the
new stationary state. This situation is called a problem of servo
control.

All five strategies (a—e) are evaluated both in a controller
functioning as a servo and a regulatory one, which means that
it was evaluated the ability of the controller to maintain (regu-
latory control) or to change the controlled variable to the new
set-point (servo control) in a reasonable action time and to not
cause sharp perturbations in the manipulated variable. In order
to evaluate the performance of these strategies, perturbations
both in operational variables (which means to cause perturba-
tions inputs to the hydrogenation reactor) and in set-point values
were introduced. Fig. 2 represents, in a schematic way, the five
strategies studied in this work.

4. Development of the simplified statistical model

The development of a simplified model is here made with the
aid of the factorial design statistical tool. This tool is useful in the
identification of the most significant variables (called factors) in
a response. The tool also allows the generation of a simplified
model, valid in the studied range of variables. More details about
factorial designs may be found in Box et al. [27].

The aim of this section is to generate a simplified model
for the reactor exit temperature (7) as a function of the feed
hydrogen concentrations in gas and liquid phases (Agf, and
Afo, respectively), o-cresol concentration (Bjf,), the reactants
feed temperature (T%,) and coolant temperature (7;). In order to
achieve this purpose, the deterministic model (Egs. (7)—(27)) is
used as virtual plant that gives the system steady-state responses
to different input values to the reactor. The factorial design is
used to guide both in which inputs should be supplied to the vir-
tual plant as also in how to compute the input variables influence
on the reactor exit temperature.

For the development of the simplified model, therefore, reac-
tor exit temperature (7) is the response and the factors are the
feed hydrogen concentrations in gas and liquid phases (Agf, and
Afo, respectively), o-cresol concentration (Bjf,), the reactants
feed temperature (7f,) and coolant temperature (7).

A factorial central composite design, composed by 43 compu-
tational simulations, was made in order to evaluate the influence
of each independent variable on the stationary state reactor exit
temperature and, with this information, to generate the required
simplified model. These simulations included 32 (2°) factorial
points, 1 central point and 10 axial points (totalizing 43 runs).
Table 1 presents the factor levels used in the factorial design
study and Table 2 brings the central composite simulation results
(the 43 runs) for the reactor exit temperature at the reached
stationary state.

The software Statistica (Statsoft, v.7) was used to analyze the
results and to generate a simplified linear model for temperature
as a function of the five studied factors. The choice to generate a
linear model was made because of the simple and useful model
structure it derives. Table 3 brings the coefficients of this model
with real (not coded) values for factors.

In this way, the reactor exit temperature at steady-state is
given by Eq. (31) (units as in Nomenclature section):

T = —62.50498 + 355.6215(Agto) + 3.836649(Aito)
+143.4759(Bjs0) + 0.676911(T5,) + 0.428379(T;)  (31)

It is worthwhile to mention that Eq. (31) is valid only for the
variables ranges described by Table 1. However, this does not
mean a limitation of the procedure, since, if a larger range is
necessary, another model can be easily generated.

The very good quality of the simplified model can be checked
in Fig. 3, in which the reactor exit temperatures predicted by the
deterministic model (Eqgs. (3)—(27)) are compared to the values

Table 1
Variables and levels for central composite design
Factor Level

—2.38% -1 0 1 2.38¢
Agfo (kmol/m®) 0.01140 0.01350 0.01500 0.01650 0.01860
Ao (kmol/m?) 0.00838 0.00990 0.01100 0.01210 0.01360
Big, (kmol/m?®) 0.18300 0.21600 0.24000 0.26400 0.29700
Tso (K) 476.00 513.00 540.00 567.00 604.00
T: (K) 381.00 450.00 500.00 550.00 619.00

& 4238 =+4(2°)"* (axial point).



258 D.N.C. Melo et al. / Chemical Engineering Journal 141 (2008) 250-263

Table 2

Central composite design for the steady-state reactor exit temperature as response

Simulation Agfo (kmol/m®) Ao (kmol/m?) Biso (kmol/m?) Tt (K) T; (K) T (K)
1 0.01350 0.00990 0.21600 513.00 450.00 512.60
2 0.01350 0.00990 0.21600 513.00 550.00 557.08
3 0.01350 0.00990 0.21600 567.00 450.00 550.83
4 0.01350 0.00990 0.21600 567.00 550.00 592.10
5 0.01350 0.00990 0.26400 513.00 450.00 518.72
6 0.01350 0.00990 0.26400 513.00 550.00 563.89
7 0.01350 0.00990 0.26400 567.00 450.00 557.61
8 0.01350 0.00990 0.26400 567.00 550.00 599.19
9 0.01350 0.01210 0.21600 513.00 450.00 512.62

10 0.01350 0.01210 0.21600 513.00 550.00 557.08

11 0.01350 0.01210 0.21600 567.00 450.00 550.84

12 0.01350 0.01210 0.21600 567.00 550.00 592.11

13 0.01350 0.01210 0.26400 513.00 450.00 518.74

14 0.01350 0.01210 0.26400 513.00 550.00 563.90

15 0.01350 0.01210 0.26400 567.00 450.00 557.62

16 0.01350 0.01210 0.26400 567.00 550.00 599.20

17 0.01650 0.00990 0.21600 513.00 450.00 514.18

18 0.01650 0.00990 0.21600 513.00 550.00 557.89

19 0.01650 0.00990 0.21600 567.00 450.00 551.69

20 0.01650 0.00990 0.21600 567.00 550.00 592.49

21 0.01650 0.00990 0.26400 513.00 450.00 520.83

22 0.01650 0.00990 0.26400 513.00 550.00 564.98

23 0.01650 0.00990 0.26400 567.00 450.00 558.78

24 0.01650 0.00990 0.26400 567.00 550.00 599.73

25 0.01650 0.01210 0.21600 513.00 450.00 514.19

26 0.01650 0.01210 0.21600 513.00 550.00 557.89

27 0.01650 0.01210 0.21600 567.00 450.00 551.70

28 0.01650 0.01210 0.21600 567.00 550.00 592.50

29 0.01650 0.01210 0.26400 513.00 450.00 520.84

30 0.01650 0.01210 0.26400 513.00 550.00 564.99

31 0.01650 0.01210 0.26400 567.00 450.00 558.78

32 0.01650 0.01210 0.26400 567.00 550.00 599.73

33 0.01140 0.01100 0.24000 540.00 500.00 556.20

34 0.01860 0.01100 0.24000 540.00 500.00 558.76

35 0.01500 0.00838 0.24000 540.00 500.00 557.91

36 0.01500 0.01360 0.24000 540.00 500.00 557.93

37 0.01500 0.01100 0.18300 540.00 500.00 549.66

38 0.01500 0.01100 0.29700 540.00 500.00 566.20

39 0.01500 0.01100 0.24000 476.00 500.00 512.41

40 0.01500 0.01100 0.24000 604.00 500.00 599.21

41 0.01500 0.01100 0.24000 540.00 381.00 504.08

42 0.01500 0.01100 0.24000 540.00 619.00 606.55

43 0.01500 0.01100 0.24000 540.00 500.00 557.92

calculated by the simplified one (Eq. (31)). As it can be observed,
the statistical model may be used without any restriction in the
range in which it was generated because the predicted values are
practically the same as the ones obtained with the deterministic
model.

The ANOVA (analysis of variance) is another way to check
the quality of the model. Table 4 shows that the statistical model
is very representative, since, the F-test, indicates a calculated
value for F'(1032.91) almost 500 times greater than the tabulated
value for F at 95% confidence level (F 95.20.22 =2.07).

The use of the statistical simplified model in the feedfor-
ward strategy is made expressing the manipulated variable
(feed reactant temperature, Tf,, or the coolant temperature,
Ty) as a function of the reactor exit temperature (con-
trolled variable, whose value is defined by the set-point)

and of the other factors. In this way, when the simplified
model is used in control strategies (i.e., in FF_statistical and
FF _statistical + FB), the manipulated variable is calculated as in
Egs. (32) and (33).

Table 3
Regression coefficients for steady-state exit temperature

Factor Regression coefficient
Mean (interception) —62.50498

Agfo 355.6215

Alfo 3.836649

Bifo 143.4759

Tt 0.676911

T; 0.428379
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Table 4
Analysis of variance (ANOVA) (R%=0.99894)

Source of variation Sum of squares Degrees of freedom Mean square F-Value
Regression 34846.33 20 1742.32 1032.91
Error 37.11 22 1.6868
Total 34883.44 42
Tt, as manipulated variable: 560
Tiet point — (—62.50498 + 355.6215(Agto) %87 —0— beta=0.1
+3.83664(A1go) + 143.4759(Bito) 556 —4— beta=0.3
1 —w— beta=0.5
T — + 0.428379(T;)) (32) < 554+ —O— beta=0.7
= 0.676911 E 2] —— beta=0.9
. . = | — set-point
T: as manipulated variable: S o
g
Tsetpoint — (—62.50498 + 355.6215(Agto) T 548 )
‘ 5
+3.83664(Ait0) + 143.4759(Bito) § 546 ] Servo control
+0.676911(T},)) O o] Change of the -10K in set-point
I = 0.428379 (33) ] Manipulated variable Tr
542
540 1, . . . .

5. Results and discussions
5.1. Evaluation of weights for weighted (mixed) strategies

The first step for the implementation of the five proposed con-
trol strategies is the analysis of the g weight in Eq. (30) in order
to decide the best value to be used in the mixed strategies. The
mixed strategy with deterministic model being used in the feed-
forward action calculation (FF_deterministic + FB) was used for
the evaluation of the best weight value. Five values for § were
tested, to know, 0.1, 0.3, 0.5, 0.7 and 0.9. Since the boundary
values (0 and 1) represent single feedback and single feedfor-
ward actions, respectively, these values were not included in this
section.

Observed vs. Predicted Values
5 factors, 1 Blocks, 43 Runs; MS Residual=1,002864

Dependent Variable: Temperature
620

600

580

560

540

520

500

Temperature by simplified model (K)

480
480 500 520 540 560 580 600 620

Temperature by deterministic model (K)

Fig. 3. Comparison between the prediction of steady-state exit reactor temper-
ature for the deterministic and statistical (simplified) models.
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Fig. 4. Controlled variable profile for different 8 values for mixed strategy
(FF_deterministic + FB) in a servo control.

The decision upon the best B value was made based both
on minimization of errors and on controlled and manipulated
variable profiles.

5.1.1. Servo control

Figs. 4 and 5 bring the reactor exit temperature (controlled
variable) and coolant fluid temperature (manipulated variable)
profiles for the mixed strategy for a servo control, in which a

505
1 Servo control
500 +#-##%%#  Change of the -10K in set-point
Manipulated variable Tr
< 495 |
= | O— beta=0.1
o 4904 —A— beta=0.3
R —v— beta=0.5
§ 485 —— beta=0.7
° 1 —&— beta=0.9
= 480 -
= ]
2
€ 475
s J
470
465 d T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000

Time (s)

Fig. 5. T; manipulated variable profile for different 8 values for mixed strategy
(FF_deterministic + FB) in a servo control.
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perturbation of —10K in the original set-point was introduced
attime=1100s.

From Fig. 4, both 8=0.9 and 0.7 (values that means a greater
contribution of the feedforward action than the feedback one)
give rise to acceptable controlled variable profiles: the controlled
variable is brought to the new set-point value in reasonable
action time and without having a significant undershoot. How-
ever, Fig. 5 demonstrates that none of 8 values causes a smooth
behavior of the manipulated variable, i.e., high coolant tem-
perature decrease rates are necessary to make the control of
reactor exit temperature when the set-point is decreased by 10 K.
This is an important point of concern, since very large coolant
temperature decrease rates are very difficult to achieve, due to
the high heat capacity of thermal fluids. This would require
more sophisticated and certainly more expensive heat design
strategies, maybe not fully justified for commodities. Analo-
gous results are observed if reactants feed temperature (7%,) is
used as manipulated variables (behavior not shown for the sake
of brevity). Nonetheless, although the decrease rates are also
high for T¥,, it represents a situation easier to be implemented
in practice.

In order to decide for the best weight for the weighted strategy
for the servo control, the integral of absolute error (IAE) values
for each g value are compared, both for T, and 7} as manipulated
variable. Table 5 shows that the smaller error are obtained for
B=0.7. In this way, for the servo control, 8=0.7 is selected
for the mixed strategy. The comparison among all five control
strategies explained in Section 3.3 are made in Section 5.2 (with
B=0.7 for the mixed strategy for servo control).

5.1.2. Regulatory control

Figs. 6 and 7 bring the reactor exit temperature (controlled
variable) and reactants feed temperature (manipulated variable)
profiles for the mixed strategy for a regulatory control, in which
step perturbations of 10% in Agfo, Alfo, Bifo and T were intro-
duced at time=1100s.

From Fig. 6, $=0.9 (almost pure feedforward action) is,
without doubt, the best weight value, since the controlled vari-
able is little disturbed from the set-point and the steady-state
is once more faster achieved. Table 6 (IAE table) really indi-
cates that $=0.9 produces a IAE value much smaller than the
ones for other B values. However, once more the behavior of the
manipulated variable is not smooth for any g (Fig. 7).

In Section 5.2, therefore, all five strategies are com-
pared for the regulatory control with f=0.9 for the mixed
strategy.

570
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N ] | <& beta=0.7
3 % beta=0.9
[ | Regulatory control — set-point
& | . :
E 62 Manipulated variable Tfo
K
>
=
2
e =
£
3 5564 tj
564 ‘\5"
552 -4 ©r ¥ =~ F = T T I T L T L 7T

] 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

Fig. 6. Controlled variable profile for different 8 values for mixed strategy
(FF_deterministic + FB) in a regulatory control.
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Fig. 7. Ty, manipulated variable profile for different 8 values for mixed strategy
(FF_deterministic + FB) in a regulatory control.

5.2. Evaluation of the control strategies

The performance for the studied strategies (feedback, feed-
forward and mixed feedforward and feedback) is shown in
Figs. 8—12. In order to decide for the best strategy in each case,
the used criterion was to observe the changes both in the manip-
ulated (7%, since implementation of the required changes in 7}

Table 5 Table 6
IAE values for servo control for the various f values TAE values for regulatory control for the various S values
Weight value (f) IAE value Weight value (8) IAE value
Manipulated T, Manipulated 7; Manipulated T, Manipulated T,
0.1 4050.91 3917.09 0.1 3400.84 4746.41
0.3 3872.72 3759.41 0.3 2641.52 3576.52
0.5 3717.65 3629.90 0.5 2010.38 2527.39
0.7 3661.58 3584.78 0.7 1368.31 1475.12
0.9 3829.54 3745.88 0.9 675.67 280.48
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Fig. 8. Exit reactor temperature (controlled variable) profile for a 10 K change
in set-point value—SISO servo control.

would be economically hardly justified) and in the controlled
variables.

The SISO servo control performance for all five strategies are
shown in Figs. 8 and 9 for both the controlled and manipulated
variables profiles.

From Fig. 8, the pure feedforward strategy, calculated by
the deterministic model (up triangle mark) seems to be the best
one, but the challenge is to have a suitable way to implement
drastic changes in the feed reactant temperature, as indicated in
Fig. 9: large manipulated variable rates, such as around 0.8 K/s,
are required. This rate in large-scale production units, such as
the studied reactor, in which mass flow rates of 180 tonnes/h
are common, may represent indeed a difficult job. In Fig. 9,
the only strategy that presents smoother changes in the manip-
ulated variable is the pure feedback strategy. However, the time
demanded by this controller to bring the process to the new set-
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Fig. 9. Reactant feed temperature (manipulated variable) profile for a 10K
change in set-point value—SISO servo control.
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Fig. 10. Exit reactor temperature (controlled variable) profile for a 5% step
disturbance in 7;—SISO regulatory control.

point (Fig. 8) is unacceptable, given the characteristic high mass
flow rates.

It has to be born in mind that the successful implementa-
tion of the pure feedforward strategy demands an excessive care
in maintaining all the others variables in a strict control. This
points out that, for the implementation in large-scale systems,
in which it is not expected to have the state variables fully mea-
sured, it is more convenient and even safer to adopt strategies
with feedback information. In this sense, the weighted feed-
back and feedforward (calculated by statistical model) strategy
(star mark) appears to be suitable for practical implementation
because, although a larger overshoot occurs, the decaying time
is quite acceptable when compared to the offset presented by the
pure feedforward (calculated by statistic model) strategy (dark
down triangle mark). Such offset may be due to the model lim-
itations in predicting the process behavior, when compared to
the detailed deterministic model. The feedback action in the sta-
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Fig. 11. Reactant feed temperature (manipulated variable) profile for a 5% step
disturbance in 7;—SISO regulatory control.
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Fig. 12. Exit o-cresol concentration in the liquid phase profile for a 5% step
disturbance in 7,—SISO regulatory control.

tistical weighted feedback and feedforward strategy is able to
eliminate such offset.

An important point to be considered is the computational
time. Extensive simulations indicate that, while the determinis-
tic approach takes around 6 min (in an AMD 2.08GHz 768MB
RAM computer) to complete the full calculations, the weighted
approach, calculated with statistical model (star mark), takes
only few seconds.

Bearing all this consideration in mind, the weighted
approach, calculated with statistical model (star mark), appears
to have the largest potential to be implemented in large-scale
systems, which is not expected to be fully monitored.

For the SISO regulatory control (Figs. 10-12), the pure feed-
back strategy is of poor performance (large overshoot and large
time demanded to bring the process back to the set-point, which
may hamper the efficient and safe operation of the reactor). The
strategies based on statistical model cause offset. In this way,
the statistical model could not bring considerable benefits for
the regulatory control problem.

In reality, almost all strategies present overshoot, but the
deterministic pure feedforward (up triangle mark) and the deter-
ministic weighted (thombus mark) strategies seem to be very
suitable, due to the small presented overshoots and to the small
time required for bringing back the system to the set-point.
However, due to the already mentioned need to adopt strategies
with feedback information, the deterministic weighted (rhom-
bus mark) strategy is selected as the best one for the SISO
regulatory control considered in this work. Once more, due
to the large manipulated variable rates, a specific design for
the heat exchange for the feed reactant temperature (7t,) is
required.

In order to illustrate the impact of the suggested strategies
in the o-cresol conversion, the profile of o-cresol concentration
at liquid phase at the reactor exit is presented in Fig. 12. It is
straightforward to check the good quality of the deterministic
weighted strategy in fast bringing back this outlet concentration
to the original one (original steady-state).

6. Conclusions

In this work, the use of easy to implement control structures
is considered for the control of a three-phase catalytic reac-
tor, where the hydrogenation of o-cresol occurs. The process
is non-linear, has large-scale production rates and possesses a
model of high dimension. Since online concentration measure-
ments are difficult to obtain, the thermal control of the reactor is
made. The feedback considered action is based on the dynamic
matrix control and feedforward actions are calculated both with
deterministic and simplified statistical models. Weighted actions
(coupling feedback and feedforward actions) are analyzed and
the best weights for both servo and regulatory controls show a
greater contribution of feedforward action.

Coolant temperature does not seem to be an economically
fully justified manipulated variable for this process control, due
to the large decrease rates demanded for the exit reactor tempera-
ture control, when set-point and load disturbances are present. In
this way, feed reactant temperature was selected as manipulated
variable, with the remaining challenge to have a suitable way to
accomplish drastic changes in the feed reactant temperature.

The results showed that it was possible to evaluate different
control strategies for the solution of the multiphase reactor con-
trol. The mixed configuration (feedforward + feedback) appears
to have a great potential since good control performance was
obtained. In regard to simplified statistical model, it significantly
reduced the calculation of control actions, but its use led to offset.
However, the combination of feedback action with the statistical
feedforward action in the servo control eliminated this offset.

In conclusion the mixed strategies, combining feedback and
feedforward actions, showed to be the best ones for the reg-
ulatory and servo control problems. The deterministic model
should be used both for feedback and feedforward actions cal-
culations in the regulatory problem, but the statistical model
should be conveniently used for feedforward calculations in the
mixed strategies for the servo control problem.
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